Performance Specification
Speed of Revolution | 1500RPM | Output Power | 7.5KW |
AC Voltage | 380V | Frequency | 50/60HZ |
Lead Time
Quantity(pieces) | 1-1000 | 1001-10000 | >10000 |
Lead time (days) | 15 | 30 | To be negotiated |
Essential Details
Warranty: 3 Years
Model Number: KG-9465AC380
Rated Voltage: 380V
Rated Speed: 1500RPM
Output Power: 7.5KW
Place of Origin: Guangdong, China
Type: Induction Motor
Application: Coffee Machine
Protect Feature: Totally Enclosed
Motor Picture
Motor Application
AC Motor Introduction
An AC motor is an electric motor driven by an alternating current (AC). The AC motor commonly consists of two basic parts, an outside stator having coils supplied with alternating current to produce a rotating magnetic field, and an inside rotor attached to the output shaft producing a second rotating magnetic field. The rotor magnetic field may be produced by permanent magnets, reluctance saliency, or DC or AC electrical windings.
Less common, AC linear motors operate on similar principles as rotating motors but have their stationary and moving parts arranged in a straight line configuration, producing linear motion instead of rotation.
The Type of AC Motor
The two main types of AC motors are induction motors and synchronous motors. The induction motor (or asynchronous motor) always relies on a small difference in speed between the stator rotating magnetic field and the rotor shaft speed called slip to induce rotor current in the rotor AC winding. As a result, the induction motor cannot produce torque near synchronous speed where induction (or slip) is irrelevant or ceases to exist. In contrast, the synchronous motor does not rely on slip-induction for operation and uses either permanent magnets, salient poles (having projecting magnetic poles), or an independently excited rotor winding. The synchronous motor produces its rated torque at exactly synchronous speed. The brushless wound-rotor doubly fed synchronous motor system has an independently excited rotor winding that does not rely on the principles of slip-induction of current. The brushless wound-rotor doubly fed motor is a synchronous motor that can function exactly at the supply frequency or sub to super multiple of the supply frequency.
Other types of motors include eddy current motors, and AC and DC mechanically commutated machines in which speed is dependent on voltage and winding connection.
AC Motor Working Principle
The basic working principle of an AC Motor mainly depends on magnetism. The basic AC Motor includes a wire coil & two permanent magnets nearby a shaft. Once an alternating current is supplied to the wire coil, then it turns into an electromagnet that produces a magnetic field. This motor includes two essential parts like stator and rotor. This stator includes a wire loop, a solid metal axle, freely moving metal parts that conduct electricity, a coil, a squirrel cage, etc.
In the stator of an AC motor, we can transmit the power toward the external coils to make up the stationary part like the stator. The coils of wire can be activated in pairs, in series to generate a magnetic field that turns approximately the exterior of the ac motor.
The rotor is balanced within the magnetic field which is changing constantly because of the rotation thus, based on the electromagnetism law; the magnetic field can generate an electric current within the rotor.
If the conductor used in this is a wire or a ring, then current supplies in a loop around it, or if the conductor is a solid metal piece simply, then eddy current will flow around it. The current induced can generate its magnetic field & based on another electromagnetism law, the rotary magnetic field will rotate also. Once the magnets interact, then the coil of wires & shaft will start to turn the motor.