1Cr13Al4 alloy is a high resistance electric heating alloy, known for its excellent corrosion resistance and high-temperature strength. It has a high electrical resistivity and a low resistance temperature coefficient. The main components of 1Cr13Al4 include chromium, aluminum, nickel, etc., which endow the alloy with good electrical resistivity, high-temperature oxidation resistance, and corrosion resistance.
The 1Cr13Al4 resistance wire is widely used in temperature sensors. A temperature sensor is a device used to measure environmental temperature, and the 1Cr13Al4 resistance wire is one of the important components of it. Its application typically involves using the 1Cr13Al4 resistance wire as the temperature sensing element of the sensor, utilizing its specific resistance-temperature characteristics to measure environmental temperature.
In temperature sensors, the resistance value of the 1Cr13Al4 resistance wire varies with the change in environmental temperature. This variation is based on the relationship between the material properties of the 1Cr13Al4 resistance wire and temperature. By measuring the resistance value of the 1Cr13Al4 resistance wire, the sensor can accurately determine the temperature of the environment and convert it into a corresponding electrical signal output for use by other devices or systems.
The application of 1Cr13Al4 resistance wire in temperature sensors has many advantages. Firstly, it has good stability and repeatability, providing accurate measurements over a wide range of temperatures. Secondly, due to its material properties and cost-effectiveness, 1Cr13Al4 resistance wire is an economically practical choice suitable for various temperature measurement applications. Additionally, it has high corrosion resistance and heat resistance, making it suitable for use in harsh environmental conditions.
Overall, the application of 1Cr13Al4 resistance wire in temperature sensors can provide reliable and accurate temperature measurements, suitable for various industrial, scientific, and household applications.
Alloy Nomenclature Performance | 1Cr13Al4 | 0Cr25Al5 | 0Cr21Al6 | 0Cr23Al5 | 0Cr21Al4 | 0Cr21Al6Nb | 0Cr27Al7Mo2 | |
Main Chemical composition | Cr | 12.0-15.0 | 23.0-26.0 | 19.0-22.0 | 20.5-23.5 | 18.0-21.0 | 21.0-23.0 | 26.5-27.8 |
Al | 4.0-6.0 | 4.5-6.5 | 5.0-7.0 | 4.2-5.3 | 3.0-4.2 | 5.0-7.0 | 6.0-7.0 | |
Re | opportune | opportune | opportune | opportune | opportune | opportune | opportune | |
Fe | Rest | Rest | Rest | Rest | Rest | Rest | Rest | |
Nb0.5 | Mo1.8-2.2 | |||||||
Max. continuous service temp. of element(°C) | 950 | 1250 | 1250 | 1250 | 1100 | 1350 | 1400 | |
Resistivity at 20ºC(μΩ·m) | 1.25 | 1.42 | 1.42 | 1.35 | 1.23 | 1.45 | 1.53 | |
Density(g/cm3) | 7.4 | 7.1 | 7.16 | 7.25 | 7.35 | 7.1 | 7.1 | |
Thermal conductivity(KJ/m·h·ºC) | 52.7 | 46.1 | 63.2 | 60.2 | 46.9 | 46.1 | ||
Coefficient of lines expansion(α×10-6/ºC) | 15.4 | 16 | 14.7 | 15 | 13.5 | 16 | 16 | |
Melting point approx.( ºC) | 1450 | 1500 | 1500 | 1500 | 1500 | 1510 | 1520 | |
Tensile strength(N/mm2) | 580-680 | 630-780 | 630-780 | 630-780 | 600-700 | 650-800 | 680-830 | |
Elongation at rupture(%) | >16 | >12 | >12 | >12 | >12 | >12 | >10 | |
Variation of area(%) | 65-75 | 60-75 | 65-75 | 65-75 | 65-75 | 65-75 | 65-75 | |
Repeat Bending frequency(F/R) | >5 | >5 | >5 | >5 | >5 | >5 | >5 | |
Hardness(H.B.) | 200-260 | 200-260 | 200-260 | 200-260 | 200-260 | 200-260 | 200-260 | |
Continuous Servicetime(Hours/ ºC) | -- | ≥80/1300 | ≥80/1300 | ≥80/1300 | ≥80/1250 | ≥50/1350 | ≥50/1350 | |
Micrographic structure | Ferrite | Ferrite | Ferrite | Ferrite | Ferrite | Ferrite | Ferrite | |
Magnetic properties | Magnetic | Magnetic | Magnetic | Magnetic | Magnetic | Magnetic | Magnetic |
![]() | ||
![]() | ||
![]() | ||
![]() | ||
![]() |