4H Semi-Insulating Silicon Substrate, Research Grade,10mm x 10mm
PAM-XIAMEN provides high quality single crystal SiC (Silicon Carbide) wafer for electronic and optoelectronic industry. SiC wafer is a next generation semiconductor materialwith unique electrical properties and excellent thermal properties for high temperature and high power device application. SiC wafer can be supplied in diameter 2~6 inch, both 4H and 6H SiC , N-type , Nitrogen doped , and semi-insulating type available.
Please contact us for more information
SILICON CARBIDE MATERIAL PROPERTIES
Polytype | Single Crystal 4H | Single Crystal 6H |
Lattice Parameters | a=3.076 Å | a=3.073 Å |
c=10.053 Å | c=15.117 Å | |
Stacking Sequence | ABCB | ABCACB |
Band-gap | 3.26 eV | 3.03 eV |
Density | 3.21 · 103 kg/m3 | 3.21 · 103 kg/m3 |
Therm. Expansion Coefficient | 4-5×10-6/K | 4-5×10-6/K |
Refraction Index | no = 2.719 | no = 2.707 |
ne = 2.777 | ne = 2.755 | |
Dielectric Constant | 9.6 | 9.66 |
Thermal Conductivity | 490 W/mK | 490 W/mK |
Break-Down Electrical Field | 2-4 · 108 V/m | 2-4 · 108 V/m |
Saturation Drift Velocity | 2.0 · 105 m/s | 2.0 · 105 m/s |
Electron Mobility | 800 cm2/V·S | 400 cm2/V·S |
hole Mobility | 115 cm2/V·S | 90 cm2/V·S |
Mohs Hardness | ~9 | ~9 |
4H Semi-Insulating Silicon Substrate, Research Grade,10mm x 10mm
SUBSTRATE PROPERTY | S4H-51-SI-PWAM-250 S4H-51-SI-PWAM-330 S4H-51-SI-PWAM-430 |
Description | Research Grade 4H SEMI Substrate |
Polytype | 4H |
Diameter | (50.8 ± 0.38) mm |
Thickness | (250 ± 25) μm (330 ± 25) μm (430 ± 25) μm |
Resistivity (RT) | >1E5 Ω·cm |
Surface Roughness | < 0.5 nm (Si-face CMP Epi-ready); <1 nm (C- face Optical polish) |
FWHM | <50 arcsec |
Micropipe Density | A+≤1cm-2 A≤10cm-2 B≤30cm-2 C≤50cm-2 D≤100cm-2 |
Surface Orientation | |
On axis <0001>± 0.5° | |
Off axis 3.5° toward <11-20>± 0.5° | |
Primary flat orientation | Parallel {1-100} ± 5° |
Primary flat length | 16.00 ± 1.70 mm |
Secondary flat orientation Si-face:90° cw. from orientation flat ± 5° | |
C-face:90° ccw. from orientation flat ± 5° | |
Secondary flat length | 8.00 ± 1.70 mm |
Surface Finish | Single or double face polished |
Packaging | Single wafer box or multi wafer box |
Usable area | ≥ 90 % |
Edge exclusion | 1 mm |
Single crystal SiC Properties
Here we compare property of Silicon Carbide, including Hexagonal SiC,CubicSiC,Single crystal SiC.
Property of Silicon Carbide (SiC)
Comparision of Property of Silicon Carbide, including Hexagonal SiC,Cubic SiC,Single crystal SiC:
Property | Value | Conditions |
Density | 3217 kg/m^3 | hexagonal |
Density | 3210 kg/m^3 | cubic |
Density | 3200 kg/m^3 | Single crystal |
Hardness,Knoop(KH) | 2960 kg/mm/mm | 100g,Ceramic,black |
Hardness,Knoop(KH) | 2745 kg/mm/mm | 100g,Ceramic,green |
Hardness,Knoop(KH) | 2480 kg/mm/mm | Single crystal. |
Young's Modulus | 700 GPa | Single crystal. |
Young's Modulus | 410.47 GPa | Ceramic,density=3120 kg/m/m/m, at room temperature |
Young's Modulus | 401.38 GPa | Ceramic,density=3128 kg/m/m/m, at room temperature |
Thermal conductivity | 350 W/m/K | Single crystal. |
Yield strength | 21 GPa | Single crystal. |
Heat capacity | 1.46 J/mol/K | Ceramic,at temp=1550 C. |
Heat capacity | 1.38 J/mol/K | Ceramic,at temp=1350 C. |
Heat capacity | 1.34 J/mol/K | Ceramic,at temp=1200 C. |
Heat capacity | 1.25 J/mol/K | Ceramic,at temp=1000 C. |
Heat capacity | 1.13 J/mol/K | Ceramic,at temp=700 C. |
Heat capacity | 1.09 J/mol/K | Ceramic,at temp=540 C. |
Electrical resistivity | 1 .. 1e+10 Ω*m | Ceramic,at temp=20 C |
Compressive strength | 0.5655 .. 1.3793 GPa | Ceramic,at temp=25 C |
Modulus of Rupture | 0.2897 GPa | Ceramic,with 1 wt% B addictive |
Modulus of Rupture | 0.1862 GPa | Ceramifc,at room temperature |
Poisson's Ratio | 0.183 .. 0.192 | Ceramic,at room temperature,density=3128 kg/m/m/m |
Modulus of Rupture | 0.1724 GPa | Ceramic,at temp=1300 C |
Modulus of Rupture | 0.1034 GPa | Ceramic,at temp=1800 C |
Modulus of Rupture | 0.07586 GPa | Ceramic,at temp=1400 C |
Tensile strength | 0.03448 .. 0.1379 GPa | Ceramic,at temp=25 C |
* Reference:CRC Materials Science and Engineering Handbook
Comparision of Property of single crystal SiC, 6H and 4H:
Property | Single Crystal 4H | Single Crystal 6H |
Lattice Parameters | a=3.076 Å | a=3.073 Å |
c=10.053 Å | c=15.117 Å | |
Stacking Sequence | ABCB | ABCACB |
Band-gap | 3.26 eV | 3.03 eV |
Density | 3.21 · 103 kg/m3 | 3.21 · 103 kg/m3 |
Therm. Expansion Coefficient | 4-5×10-6/K | 4-5×10-6/K |
Refraction Index | no = 2.719 | no = 2.707 |
ne = 2.777 | ne = 2.755 | |
Dielectric Constant | 9.6 | 9.66 |
Thermal Conductivity | 490 W/mK | 490 W/mK |
Break-Down Electrical Field | 2-4 · 108 V/m | 2-4 · 108 V/m |
Saturation Drift Velocity | 2.0 · 105 m/s | 2.0 · 105 m/s |
Electron Mobility | 800 cm2/V·S | 400 cm2/V·S |
hole Mobility | 115 cm2/V·S | 90 cm2/V·S |
Mohs Hardness | ~9 | ~9 |
* Reference:Xiamen Powerway Advanced Material Co.,Ltd.
Comparision of property of 3C-SiC,4H-SiC and 6H-SiC:
Si-C Polytype | 3C-SiC | 4H-SiC | 6H-SiC |
Crystal structure | Zinc blende (cubic) | Wurtzite ( Hexagonal) | Wurtzite ( Hexagonal) |
Group of symmetry | T2d-F43m | C46v-P63mc | C46v-P63mc |
Bulk modulus | 2.5 x 1012 dyn cm-2 | 2.2 x 1012 dyn cm-2 | 2.2 x 1012 dyn cm-2 |
Linear thermal expansion coefficient | 2.77 (42) x 10-6 K-1 | ||
Debye temperature | 1200 K | 1300 K | 1200 K |
Melting point | 3103 (40) K | 3103 ± 40 K | 3103 ± 40 K |
Density | 3.166 g cm-3 | 3.21 g cm-3 | 3.211 g cm-3 |
Hardness | 9.2-9.3 | 9.2-9.3 | 9.2-9.3 |
Surface microhardness | 2900-3100 kg mm-2 | 2900-3100 kg mm-2 | 2900-3100 kg mm-2 |
Dielectric constant (static) | ε0 ~= 9.72 | The value of 6H-SiC dielectric constant is usually used | ε0,ort ~= 9.66 |
Infrared refractive index | ~=2.55 | ~=2.55 (c axis) | ~=2.55 (c axis) |
Refractive index n(λ) | n(λ)~= 2.55378 + 3.417 x 104·λ-2 | n0(λ)~= 2.5610 + 3.4 x 104·λ-2 | n0(λ)~= 2.55531 + 3.34 x 104·λ-2 |
ne(λ)~= 2.6041 + 3.75 x 104·λ-2 | ne(λ)~= 2.5852 + 3.68 x 104·λ-2 | ||
Radiative recombination coefficient | 1.5 x 10-12 cm3/s | 1.5 x 10-12 cm3/s | |
Optical photon energy | 102.8 meV | 104.2 meV | 104.2 meV |
Effective electron mass (longitudinal)ml | 0.68mo | 0.677(15)mo | 0.29mo |
Effective electron mass (transverse)mt | 0.25mo | 0.247(11)mo | 0.42mo |
Effective mass of density of states mcd | 0.72mo | 0.77mo | 2.34mo |
Effective mass of the density of states in one valley of conduction band mc | 0.35mo | 0.37mo | 0.71mo |
Effective mass of conductivity mcc | 0.32mo | 0.36mo | 0.57mo |
Effective hall mass of density of state mv? | 0.6 mo | ~1.0 mo | ~1.0 mo |
Lattice constant | a=4.3596 A | a = 3.0730 A | a = 3.0730 A |
b = 10.053 | b = 10.053 |
* Reference: IOFFE
SiC 4H and SiC 6H manufacturer reference:PAM-XIAMEN is the world’s leading developer of solid-state lighting technology,he offer a full line: Sinlge crystal SiC wafer and epitaxial wafer and SiC wafer reclaim
SiC Material Properties
SILICON CARBIDE (SiC) materials are currently metamorphosing from research and development into a market driven manufacturing product. SiC substrates are currently used as the base for a large fraction of the world production of green, blue, and ultraviolet light-emitting diodes (LEDs). Emerging markets for SiC homoepitaxy include high-power switching devices and microwave devices for S and X band . Applications for heteroepitaxial GaN-based structures on SiC substrates include LEDs and microwave devices. These exciting device results stem primarily from the exploitation of the unique electrical and thermophysical properties offered by SiC compared to Si and GaAs. Among these are: a large bandgap for high-temperature operation and radiation resistance; high critical breakdown field for high-power output; high saturated electron velocity for high-frequency operation; significantly higher thermal conductivity for thermal management of high-power devices.