4H High Purity Semi Insulating SiC Wafer , Production Grade , Epi Ready, 2”Size
PAM-XIAMEN provides high quality single crystal SiC (Silicon Carbide)waferfor electronic and optoelectronic industry. SiC wafer is a next generation semiconductor material with unique electrical properties and excellent thermal properties for high temperature and high power device application. SiC wafer can be supplied in diameter 2~6 inch, both 4H and 6H SiC , N-type , Nitrogen doped , and semi-insulating type available. Please contact us for more information
Here Shows Detail Specification:
SILICON CARBIDE MATERIAL PROPERTIES
Polytype | Single Crystal 4H | Single Crystal 6H |
Lattice Parameters | a=3.076 Å | a=3.073 Å |
c=10.053 Å | c=15.117 Å | |
Stacking Sequence | ABCB | ABCACB |
Band-gap | 3.26 eV | 3.03 eV |
Density | 3.21 · 103 kg/m3 | 3.21 · 103 kg/m3 |
Therm. Expansion Coefficient | 4-5×10-6/K | 4-5×10-6/K |
Refraction Index | no = 2.719 | no = 2.707 |
ne = 2.777 | ne = 2.755 | |
Dielectric Constant | 9.6 | 9.66 |
Thermal Conductivity | 490 W/mK | 490 W/mK |
Break-Down Electrical Field | 2-4 · 108 V/m | 2-4 · 108 V/m |
Saturation Drift Velocity | 2.0 · 105 m/s | 2.0 · 105 m/s |
Electron Mobility | 800 cm2/V·S | 400 cm2/V·S |
hole Mobility | 115 cm2/V·S | 90 cm2/V·S |
Mohs Hardness | ~9 | ~9 |
4Hhigh Purity Semi Insulating Silicon Carbide Wafer, Production Grade,Epi Ready,2”Size
SUBSTRATE PROPERTY | S4H-51-SI-PWAM-250 S4H-51-SI-PWAM-330 S4H-51-SI-PWAM-430 |
Description | Production Grade 4H SEMI Substrate |
Polytype | 4H |
Diameter | (50.8 ± 0.38) mm |
Thickness | (250 ± 25) μm (330 ± 25) μm (430 ± 25) μm |
Resistivity (RT) | >1E5 Ω·cm |
Surface Roughness | < 0.5 nm (Si-face CMP Epi-ready); <1 nm (C- face Optical polish) |
FWHM | <30 arcsec <50 arcsec |
Micropipe Density | A+≤1cm-2 A≤10cm-2 B≤30cm-2 C≤50cm-2 D≤100cm-2 |
Surface Orientation | |
On axis <0001>± 0.5° | |
Off axis 3.5° toward <11-20>± 0.5° | |
Primary flat orientation | Parallel {1-100} ± 5° |
Primary flat length | 16.00 ± 1.70 mm |
Secondary flat orientation Si-face:90° cw. from orientation flat ± 5° | |
C-face:90° ccw. from orientation flat ± 5° | |
Secondary flat length | 8.00 ± 1.70 mm |
Surface Finish | Single or double face polished |
Packaging | Single wafer box or multi wafer box |
Usable area | ≥ 90 % |
Edge exclusion | 1 mm |
sic crystal defects
Most of the defects which were observed in SiC were also observed in other crystalline materials. Like the dislocations, stacking faults (SFs), low angle boundaries (LABs) and twins. Some others appear in materials having the Zing- Blend or the Wurtzite structure, like the IDBs. Micropipes and inclusions from other phases mainly appear in SiC.
SiC Material Properties
SILICON CARBIDE (SiC) materials are currently metamorphosing from research and development into a market driven manufacturing product. SiC substrates are currently used as the base for a large fraction of the world production of green, blue, and ultraviolet light-emitting diodes (LEDs). Emerging markets for SiC homoepitaxy include high-power switching devices and microwave devices for S and X band . Applications for heteroepitaxial GaN-based structures on SiC substrates include LEDs and microwave devices. These exciting device results stem primarily from the exploitation of the unique electrical and thermophysical properties offered by SiC compared to Si and GaAs. Among these are: a large bandgap for high-temperature operation and radiation resistance; high critical breakdown field for high-power output; high saturated electron velocity for high-frequency operation; significantly higher thermal conductivity for thermal management of high-power devices.