Specifications
Brand Name :
PAM-XIAMEN
Place of Origin :
China
MOQ :
1-10,000pcs
Price :
By Case
Payment Terms :
T/T
Supply Ability :
10,000 wafers/month
Delivery Time :
5-50 working days
name :
Semi Insulating SIC Wafer
Description :
Production Grade 4H SEMI Substrate
grade :
Production Grade
Size :
3”Size
keywords :
single crystal SiC wafer
application :
researcher
Description

4H High Purity Semi Insulating SiC Wafer, Production Grade,3”Size, Low Carrier Concentration

PAM-XIAMEN provides high quality single crystal SiC (Silicon Carbide)waferfor electronic and optoelectronic industry. SiC wafer is a next generation semiconductor materialwith unique electrical properties and excellent thermal properties for high temperature and high power device application. SiC wafer can be supplied in diameter 2~6 inch, both 4H and 6H SiC , N-type , Nitrogen doped , and semi-insulating type available. Please contact us for more information

High Purity Semi Insulating SiC Wafer: Due to the wide band gap, the intrinsic carrier concentration of SiC wafer is very low at room temperature. This value is about 0.13cm-3 for 3C SiC, about 5x10^-2cm2 for 4H SiC and about 1x10^- 6 cm-3 for 6H SiC. This is the main reason why SiC electronic devices can work at high temperature and the leakage current is very small.


SILICON CARBIDE MATERIAL PROPERTIES

Polytype Single Crystal 4H Single Crystal 6H
Lattice Parameters a=3.076 Å a=3.073 Å
c=10.053 Å c=15.117 Å
Stacking Sequence ABCB ABCACB
Band-gap 3.26 eV 3.03 eV
Density 3.21 · 103 kg/m3 3.21 · 103 kg/m3
Therm. Expansion Coefficient 4-5×10-6/K 4-5×10-6/K
Refraction Index no = 2.719 no = 2.707
ne = 2.777 ne = 2.755
Dielectric Constant 9.6 9.66
Thermal Conductivity 490 W/mK 490 W/mK
Break-Down Electrical Field 2-4 · 108 V/m 2-4 · 108 V/m
Saturation Drift Velocity 2.0 · 105 m/s 2.0 · 105 m/s
Electron Mobility 800 cm2/V·S 400 cm2/V·S
hole Mobility 115 cm2/V·S 90 cm2/V·S
Mohs Hardness ~9 ~9


4H High Purity Semi Insulating SiC Wafer, Production Grade,3”Size

SUBSTRATE PROPERTY S4H-51-SI-PWAM-250 S4H-51-SI-PWAM-330 S4H-51-SI-PWAM-430
Description Production Grade 4H SEMI Substrate
Polytype 4H
Diameter (50.8 ± 0.38) mm
Thickness (250 ± 25) μm (330 ± 25) μm (430 ± 25) μm
Resistivity (RT) >1E5 Ω·cm
Surface Roughness < 0.5 nm (Si-face CMP Epi-ready); <1 nm (C- face Optical polish)
FWHM <30 arcsec <50 arcsec
Micropipe Density A+≤1cm-2 A≤10cm-2 B≤30cm-2 C≤50cm-2 D≤100cm-2
Surface Orientation
On axis <0001>± 0.5°
Off axis 3.5° toward <11-20>± 0.5°
Primary flat orientation Parallel {1-100} ± 5°
Primary flat length 16.00 ± 1.70 mm
Secondary flat orientation Si-face:90° cw. from orientation flat ± 5°
C-face:90° ccw. from orientation flat ± 5°
Secondary flat length 8.00 ± 1.70 mm
Surface Finish Single or double face polished
Packaging Single wafer box or multi wafer box
Usable area ≥ 90 %
Edge exclusion 1 mm

SiC crystal growth

Bulk crystal growth is the technique for fabrication of single crystalline substrates , making the base for further device processing.To have a breakthrough in SiC technology obviously we need production of SiC substrate with a reproducible process.6H- and 4H- SiC crystals are grown in graphite crucibles at high temperatures up to 2100—2500°C. The operating temperature in the crucible is provided either by inductive (RF) or resistive heating. The growth occurs on thin SiC seeds. The source represents polycrystalline SiC powder charge. The SiC vapor in the growth chamber mainly consists of three species, namely, Si, Si2C, and SiC2, which are diluted by carrier gas, for example, Argon. The SiC source evolution includes both time variation of porosity and granule diameter and graphitization of the powder granules.


Growth of 3C-SiC on Large-Area (Silicon) Substrates
Despite the absence of SiC substrates, the potential benefits of SiC hostile-environment electronics nevertheless drove modest research efforts aimed at obtaining SiC in a manufacturable wafer form.Toward this end, the heteroepitaxial growth of single-crystal SiC layers on top of large-area siliconsubstrates was first carried out in 1983 , and subsequently followed by a great many others over the years using a variety of growth techniques. Primarily owing to large differences in lattice constant (~20% difference between SiC and Si) and thermal expansion coefficient (~8% difference), heteroepitaxy of SiC using silicon as a substrate always results in growth of 3C-SiC with a very high density of crystallographic structural defects such as stacking faults, microtwins, and inversion domain boundaries . Other largearea wafer materials besides silicon (such as sapphire, silicon-on-insulator, and TiC) have been employed as substrates for heteroepitaxial growth of SiC epilayers, but the resulting films have been of comparablypoor quality with high crystallographic defect densities. The most promising 3C-SiC-on-silicon approach to date that has achieved the lowest crystallographic defect density involves the use of undulant silicon substrates . However, even with this highly novel approach, dislocation densities remain very high compared to silicon and bulk hexagonal SiC wafers.
While some limited semiconductor electronic devices and circuits have been implemented in 3C-SiC grown on silicon, the performance of these electronics (as of this writing) can be summarized as severely limited by the high density of crystallographic defects to the degree that almost none of the operational benefits discussed in Section 5.3 has been viably realized. Among other problems, the crystal defects “leak” parasitic current across reverse-biased device junctions where current flow is not desired. Because excessive crystal defects lead to electrical device shortcomings, there are as yet no commercial electronics manufactured in 3C-SiC grown on large-area substrates. Thus, 3C-SiC grown on silicon presently has more potential as a mechanical material in microelectromechanical systems (MEMS) applications (Section 5.6.5) instead of being used purely as a semiconductor in traditional solid-state transistor electronics.

Send your message to this supplier
Send Now

4H High Purity Semi Insulating SiC Wafer , Production Grade , 3”Size , Low Carrier Concentration

Ask Latest Price
Brand Name :
PAM-XIAMEN
Place of Origin :
China
MOQ :
1-10,000pcs
Price :
By Case
Payment Terms :
T/T
Supply Ability :
10,000 wafers/month
Contact Supplier
4H High Purity Semi Insulating SiC Wafer , Production Grade , 3”Size , Low Carrier Concentration

XIAMEN POWERWAY ADVANCED MATERIAL CO., LTD.

Active Member
6 Years
fujian, xiamen
Since 1990
Business Type :
Manufacturer, Exporter, Seller
Main Products :
Total Annual :
10 Million-50 Million
Employee Number :
50~100
Certification Level :
Active Member
Contact Supplier
Submit Requirement