Alumina ceramic crucible, as an important kiln tool in the ceramic firing process, its main function is to protect the ceramic ware and body during the firing process, prevent gas and harmful substances from damaging and staining them. A crucible is usually made of refractory clay, which can remain stable at high temperatures and will not deform or break due to heat. Refractory clay is mainly composed of highly fire-resistant minerals such as mullite and corundum, which can maintain structural integrity at extremely high temperatures.
Naterial | Unit | A95% Alumina Ceramics | A97% Alumina Ceramics | A99% Alumina Ceramics | A99.7% Alumina Ceramics |
Density | g/cm³ | 3.6 | 3.72 | 3.85 | 3.85 |
Flexural Strength | Mpa | 290 | 300 | 350 | 350 |
Compressive Strength | Mpa | 3300 | 3400 | 3600 | 3600 |
Modulus of Elasticity | Gpa | 340 | 350 | 380 | 380 |
Impact Resistance | MPam1/2 | 3.9 | 4 | 5 | 5 |
Weibull Modulus | M | 10 | 10 | 11 | 11 |
Vickers Hardulus | HV0.5 | 1800 | 1850 | 1900 | 1900 |
Thermal Expansion Coefficient | 10-6K-1 | 5.0-8.3 | 5.0-8.3 | 5.4-8.3 | 5.4-8.3 |
Thermal Conductivity | W/Mk | 23 | 24 | 27 | 27 |
Thermal Shock Resistance | △T℃ | 250 | 250 | 270 | 270 |
*Maximum Use Temperature | ℃ | 1600 | 1600 | 1650 | 1650 |
Volume Resistivity at 20℃ | Ω | ≥1014 | ≥1014 | ≥1014 | ≥1014 |
Dielectric Strength | KV/mm | 20 | 20 | 25 | 25 |
Dielectric constant | εr | 10 | 10 | 10 | 10 |