Durable and Heat Resistant Ceramic Bowl for Analyzing and Firing Processes
The material of ceramic bowls is mainly refractory clay, among which high-performance refractory materials such as mullite and corundum mullite are key components. The excellent performance of these raw materials enables the bowl to maintain stability during high-temperature firing, providing important guarantees for the smooth production of ceramics.
Naterial | Unit | A95% Alumina Ceramics | A97% Alumina Ceramics | A99% Alumina Ceramics | A99.7% Alumina Ceramics |
Density | g/cm³ | 3.6 | 3.72 | 3.85 | 3.85 |
Flexural Strength | Mpa | 290 | 300 | 350 | 350 |
Compressive Strength | Mpa | 3300 | 3400 | 3600 | 3600 |
Modulus of Elasticity | Gpa | 340 | 350 | 380 | 380 |
Impact Resistance | MPam1/2 | 3.9 | 4 | 5 | 5 |
Weibull Modulus | M | 10 | 10 | 11 | 11 |
Vickers Hardulus | HV0.5 | 1800 | 1850 | 1900 | 1900 |
Thermal Expansion Coefficient | 10-6K-1 | 5.0-8.3 | 5.0-8.3 | 5.4-8.3 | 5.4-8.3 |
Thermal Conductivity | W/Mk | 23 | 24 | 27 | 27 |
Thermal Shock Resistance | △T℃ | 250 | 250 | 270 | 270 |
*Maximum Use Temperature | ℃ | 1600 | 1600 | 1650 | 1650 |
Volume Resistivity at 20℃ | Ω | ≥1014 | ≥1014 | ≥1014 | ≥1014 |
Dielectric Strength | KV/mm | 20 | 20 | 25 | 25 |
Dielectric constant | εr | 10 | 10 | 10 | 10 |