Corundum Mullite Composite Ceramic Bowl for Analyzing and Firing in Industrial Settings
The selection of raw materials for the bowl directly affects its performance and service life. The use of high-performance refractory materials such as mullite and corundum mullite not only increases the refractory temperature of the mortar, but also enhances its thermal conductivity and stability. These performance improvements enable the bowl to more effectively protect the body during the ceramic firing process, ensuring the quality and yield of ceramic products.
Naterial | Unit | A95% Alumina Ceramics | A97% Alumina Ceramics | A99% Alumina Ceramics | A99.7% Alumina Ceramics |
Density | g/cm³ | 3.6 | 3.72 | 3.85 | 3.85 |
Flexural Strength | Mpa | 290 | 300 | 350 | 350 |
Compressive Strength | Mpa | 3300 | 3400 | 3600 | 3600 |
Modulus of Elasticity | Gpa | 340 | 350 | 380 | 380 |
Impact Resistance | MPam1/2 | 3.9 | 4 | 5 | 5 |
Weibull Modulus | M | 10 | 10 | 11 | 11 |
Vickers Hardulus | HV0.5 | 1800 | 1850 | 1900 | 1900 |
Thermal Expansion Coefficient | 10-6K-1 | 5.0-8.3 | 5.0-8.3 | 5.4-8.3 | 5.4-8.3 |
Thermal Conductivity | W/Mk | 23 | 24 | 27 | 27 |
Thermal Shock Resistance | △T℃ | 250 | 250 | 270 | 270 |
*Maximum Use Temperature | ℃ | 1600 | 1600 | 1650 | 1650 |
Volume Resistivity at 20℃ | Ω | ≥1014 | ≥1014 | ≥1014 | ≥1014 |
Dielectric Strength | KV/mm | 20 | 20 | 25 | 25 |
Dielectric constant | εr | 10 | 10 | 10 | 10 |