Staple Fiber Geotextile Lightweight and Easy to Transport and Lay for Construction
Product Introduction
Short fiber geotechnical fabric mainly uses polyester fibers as raw materials, and is produced through processes such as loosening, combing, tangling, spreading, needling, etc., using non-woven production equipment. This allows different fibers to interweave and entangle with each other, forming a non-woven geotechnical fabric with specific specifications.
Physical characteristics
Strength and elongation:Short fiber geotechnical fabric maintains sufficient strength and elongation in both dry and wet conditions, with high tensile strength and tear resistance.
Corrosion resistance:This material can withstand corrosion for a long time in soil and water with different acidity and alkalinity, suitable for various harsh environments.
Permeability:Due to the presence of gaps between fibers, short fiber geotechnical fabric has good water permeability, which helps in the discharge of moisture.
Lightweight:Short fiber geotechnical fabric is light and soft, making it easy to transport, lay and construct.
Product Application
Staple fiber geotextile is widely used in many fields because of its unique properties. It can be used as an isolation material to deal with surfaces with complex terrain or large curvature. In water conservancy projects, staple fiber geotextile can be used for seawall, river embankment, river embankment, lake embankment projects and reservoir reinforcement projects. In highway, railway and airport engineering, it can be used in soft foundation reinforcement treatment, slope protection, road remote reflection, fracture structure bumble, drainage system and green isolation belt. In addition, the staple fiber geotextile is also suitable for environmental protection engineering, power plant engineering and port waterway engineering and other fields.
Product Specification
* Grams/㎡: 100g~800g/㎡
* Width:2m~6m
* Roll length:50m~100m
PS: Customized request accept for all above.
Product Specification and Technical Index (GB/T 17638—2017)
Item | Nominal Breaking Strength(KN/m) | |||||||||
3 | 5 | 8 | 10 | 15 | 20 | 25 | 30 | 40 | ||
1 | Breaking Strength (KN/m,≥,LD/TD) | 3.0 | 5.0 | 8.0 | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 | 40.0 |
2 | Elongation Rate (%,≥,LD/TD) | 20~100 | ||||||||
3 | Bursting Strength(KN)≥ | 0.6 | 1.0 | 1.4 | 1.8 | 2.5 | 3.2 | 4.0 | 5.5 | 7.0 |
4 | Mass Deviation Rate Per Unit Area(%) | ±5 | ||||||||
5 | Width Variation ( %) | -0.5 | ||||||||
6 | Thickness Deviation Rate(%) | ±10 | ||||||||
7 | Sieve Size O90,O95 (mm) | 0.07~0.20 | ||||||||
8 | Vertical Permeability Coefficient (cm/s) | Kx(10ˉ1-10ˉ3) K=1.0-9.9 | ||||||||
9 | Tearing Strength (KN,≥,MD/CD) | 0.10 | 0.15 | 0.20 | 0.25 | 0.40 | 0.50 | 0.65 | 0.80 | 1.00 |
10 | Acid And Alkali Resistance (Strength Retention Rate)/%≥ | 80 | ||||||||
11 | Antioxidant Performance (Strength Retention Rate)/%≥ | 80 | ||||||||
12 | UV Resistance(Strength Retention Rate)/%≥ | 80 |
(GB/T17638-1998)
Specification | F100 | F150 | F200 | F250 | F300 | F350 | F400 | F450 | F500 | F600 | 800 | Remark |
Item | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 600 | 800 | |
Weight Variation (%) | -8 | -8 | -8 | -8 | -7 | -7 | -7 | -7 | -6 | -6 | -6 | - |
Thickness (mm≥) | 0.90 | 1.20 | 1.70 | 2.10 | 2.40 | 2.70 | 3.00 | 3.20 | 3.60 | 4.10 | 5.00 | |
Width Variation ( %) | -0.50 | |||||||||||
Breaking Strength (KN/m,≥,LD/TD) | 2.50 | 4.50 | 6.50 | 8.00 | 9.50 | 11.00 | 12.50 | 14.00 | 16.00 | 19.00 | 25.00 | |
Elongation Rate (%,≥,LD/TD) | 25-100 | |||||||||||
CBR Burst Strength ( KN≥) | 0.30 | 0.60 | 0.90 | 1.20 | 1.50 | 1.80 | 2.10 | 2.40 | 2.70 | 3.20 | 4.00 | |
Sieve Size O90,O95 (mm) | 0.07-0.2 | |||||||||||
Vertical Permeability Coefficient (cm/s) | Kx(10ˉ1-10ˉ3) | K=1.0-9.9 | ||||||||||
Tearing Strength (KN,≥,MD/CD) | 0.08 | 0.12 | 0.16 | 0.20 | 0.24 | 0.28 | 0.33 | 0.38 | 0.42 | 0.46 | 0.60 | |
1) Specifications according to the mass per unit area, the actual specification between adjacent specifications in the table, according to the interpolation method to calculate the corresponding assessment index, if beyond the scope in the table, shall be determined between supplier and the demander. 2) Unit Weight standards according to the design or agreement. 3) Width as reference indexes for internal control of production, the appraisal based on the actual design value if user raised requests. |