Staple Geotextile Effective Filtration For Landfills And Waste Management
Product Introduction
Staple fiber geotextile with good filtration performance is a geomaterial made of staple fiber as raw material by non-woven production equipment, which plays an important filtering role in civil engineering.
Product Properties
1. Good water permeability: the short fiber geotextile has a gap between the fibers, so it has good water seepage performance, can make water flow through, and effectively intercept soil particles, fine sand, small stone, etc., to prevent soil erosion.
2. Corrosion resistance: staple fiber geotextile with polypropylene or polyester and other chemical fiber as raw materials, with acid and alkali resistance, no corrosion, no moth, anti-oxidation characteristics.
3. Microbial resistance: It is not damaged by microorganisms and insects, and maintains the stability and functionality of the material.
4. Convenient construction: Due to the light and soft material, the transport, laying and construction of short fiber geotextile are convenient.
Product Application
1. Hydraulic engineering: In reservoirs, DAMS and other projects, staple fiber geotextiles play the role of isolation and filtration to prevent the loss of fine particles of soil.
2. Road construction: used for reinforcement of railway roadbed, maintenance of highway pavement, improve the bearing capacity and stability of roadbed.
3. Environmental protection engineering: In landfills, sewage treatment plants and other projects, staple fiber geotextiles can prevent the spread of pollutants, while having drainage and isolation functions.
4. Slope engineering: In slope protection, staple fiber geotextiles can prevent soil erosion and landslide and improve slope stability.
Product Specification
* Grams/㎡: 100g~800g/㎡
* Width:2m~6m
* Roll length:50m~100m
PS: Customized request accept for all above.
Product Specification and Technical Index (GB/T 17638—2017)
Item | Nominal Breaking Strength(KN/m) | |||||||||
3 | 5 | 8 | 10 | 15 | 20 | 25 | 30 | 40 | ||
1 | Breaking Strength (KN/m,≥,LD/TD) | 3.0 | 5.0 | 8.0 | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 | 40.0 |
2 | Elongation Rate (%,≥,LD/TD) | 20~100 | ||||||||
3 | Bursting Strength(KN)≥ | 0.6 | 1.0 | 1.4 | 1.8 | 2.5 | 3.2 | 4.0 | 5.5 | 7.0 |
4 | Mass Deviation Rate Per Unit Area(%) | ±5 | ||||||||
5 | Width Variation ( %) | -0.5 | ||||||||
6 | Thickness Deviation Rate(%) | ±10 | ||||||||
7 | Sieve Size O90,O95 (mm) | 0.07~0.20 | ||||||||
8 | Vertical Permeability Coefficient (cm/s) | Kx(10ˉ1-10ˉ3) K=1.0-9.9 | ||||||||
9 | Tearing Strength (KN,≥,MD/CD) | 0.10 | 0.15 | 0.20 | 0.25 | 0.40 | 0.50 | 0.65 | 0.80 | 1.00 |
10 | Acid And Alkali Resistance (Strength Retention Rate)/%≥ | 80 | ||||||||
11 | Antioxidant Performance (Strength Retention Rate)/%≥ | 80 | ||||||||
12 | UV Resistance(Strength Retention Rate)/%≥ | 80 |
(GB/T17638-1998)
Specification | F100 | F150 | F200 | F250 | F300 | F350 | F400 | F450 | F500 | F600 | 800 | Remark |
Item | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 600 | 800 | |
Weight Variation (%) | -8 | -8 | -8 | -8 | -7 | -7 | -7 | -7 | -6 | -6 | -6 | - |
Thickness (mm≥) | 0.90 | 1.20 | 1.70 | 2.10 | 2.40 | 2.70 | 3.00 | 3.20 | 3.60 | 4.10 | 5.00 | |
Width Variation ( %) | -0.50 | |||||||||||
Breaking Strength (KN/m,≥,LD/TD) | 2.50 | 4.50 | 6.50 | 8.00 | 9.50 | 11.00 | 12.50 | 14.00 | 16.00 | 19.00 | 25.00 | |
Elongation Rate (%,≥,LD/TD) | 25-100 | |||||||||||
CBR Burst Strength ( KN≥) | 0.30 | 0.60 | 0.90 | 1.20 | 1.50 | 1.80 | 2.10 | 2.40 | 2.70 | 3.20 | 4.00 | |
Sieve Size O90,O95 (mm) | 0.07-0.2 | |||||||||||
Vertical Permeability Coefficient (cm/s) | Kx(10ˉ1-10ˉ3) | K=1.0-9.9 | ||||||||||
Tearing Strength (KN,≥,MD/CD) | 0.08 | 0.12 | 0.16 | 0.20 | 0.24 | 0.28 | 0.33 | 0.38 | 0.42 | 0.46 | 0.60 | |
1) Specifications according to the mass per unit area, the actual specification between adjacent specifications in the table, according to the interpolation method to calculate the corresponding assessment index, if beyond the scope in the table, shall be determined between supplier and the demander. 2) Unit Weight standards according to the design or agreement. 3) Width as reference indexes for internal control of production, the appraisal based on the actual design value if user raised requests. |