High Performance Permanent Magnet Ferrite Resistant To Low Temperature Minus 60℃ W015
What's the feature of ceramic strontium ferrite magnet made by wet compression molding?
Composition - Contain strontium ferrite (SrFe12O19) as the primary magnetic material. Strontium ferrite has good magnetic properties and is inexpensive to produce.
Density - Have a high relative density of around 95% or more after sintering. This gives good mechanical strength.
An-isotropy - Exhibit strong magnetocrystalline an-isotropy due to their hexagonal crystal structure. This results in a preferred direction of magnetization along one axis.
Molding method - The powder is mixed with a liquid binder and compression molded into a dense green compact using high pressures. This orients the an-isotropic particles.
Firing process - The compact is then sintered at high temperature to develop density while preserving the induced magnetic anisotropy orientation from molding.
Remanence - Have a maximum magnetic flux density or remanence along the axis of anisotropy, but little/no remanence perpendicular to it.
Coercivity - Usually have medium to high coercivity depending on additives, density, and anisotropy level achieved.
PHYSICAL PROPERTIES OF SINTERED FERRITE MAGNETS
Units | Sintered Ferrite (Ceramic) | |
Curie Temperature | ºC | 450 |
Maximum Operating Temperature | ºC | 350 |
Hardness | Hv | >530 |
Density | g/cm3 | 4.8 – 5.0 |
Relative recoil permeability | μrec | 1.05-1.1 |
Temperature Coefficient Br | %/ºC | -0.18 |
Temperature Coefficient iHc | %/ºC | 0.11-0.40 |
Anti-Bending Strength | N/m2 | (0.5-0.9)×108 |
Anti-Compressive Strength | N/m2 | ≥6.9×108 |
Anti-Tensile Strength | N/m2 | (0.2-0.5)×108 |
Specific Heat | J/kg·K | 600-900 |
Resistivity | Q.cm | >104 |
What's the application of Xinheng's permanent ferrite magnets?
Xinheng mainly manufactures the following types of ceramic arc segment magnets:
How Xinheng fabricates its permanent strontium ferrite magnet?
FERRITE POWDER GRADE OF MOTORCYCLE MOTORS MAGNET
牌号 Grade | Br(mT) | Hcb(KA/m) | Hcj(KA/m) | (BH)max(KJ/m3) | ||||
mT | Gs | KA/m | Oe | KA/m | Oe | KJ/m3 | MGOe | |
Y33 | 410-430 | 4100-4300 | 220-250 | 2760-3140 | 225-255 | 2830-3200 | 31.5-35.0 | 3.9-4.4 |
Y33H | 410-430 | 4100-4300 | 250-270 | 3140-3390 | 250-275 | 3140-3450 | 31.5-35.0 | 3.9-4.4 |
Y33H-2 | 410-430 | 4100-4300 | 285-315 | 3580-3960 | 305-335 | 3830-4200 | 31.8-35.0 | 4.0-4.4 |
Y34 | 420-440 | 4200-4400 | 200-230 | 2510-2890 | 205-235 | 2570-2950 | 32.5-36.0 | 4.1-4.4 |
Y35 | 430-450 | 4300-4500 | 215-239 | 2700-3000 | 217-241 | 2730-3030 | 33.1-38.2 | 4.1-4.8 |
Y36 | 430-450 | 4300-4500 | 247-271 | 3100-3400 | 250-274 | 3140-3440 | 35.1-38.3 | 4.1-4.8 |
Y38 | 440-460 | 4400-4600 | 285-305 | 3580-3830 | 294-310 | 3690-3890 | 36.6-40.6 | 4.6-4.8 |
Y40 | 440-460 | 4400-4600 | 330-354 | 4150-4450 | 340-360 | 4270-4520 | 37.6-41.8 | 4.7-5.2 |
MOTORCYCLE MOTORS MAGNET SPECIFICATION TABLE
No. |
Item |
R |
r |
W |
L |
h |
Grade |
Application |
1 | W118 | 68.1 | 60.7 | 25 | 25 | 7.50 | Y33H | 1KW inverter motor |
2 | W018F | 72.5 | 60.7 | 27.9 | 35 | 11.80 | Y40 | 2KW inverter motor |
3 | W005A | 72.5 | 60.5 | 29.5 | 42 | 11.80 | Y33H | 2.3KW inverter motor |
4 | W050E | 87.3 | 78.5 | 24 | 40 | 8.80 | Y33H | 2.6KW inverter motor |
5 | W159 | 74.1 | 65.5 | 28.86 | 47 | 8.60 | Y40 | 2.8KW inverter motor |
6 | W017F | 86.5 | 78.5 | 24.0 | 51 | 7.90 | Y33H-2 | 3KW inverter motor |
7 | W087 | 86.5 | 78.5 | 24.0 | 64 | 7.80 | Y33H-2 | 5KW inverter motor |
8 | W138C | 101 | 90.2 | 24.5 | 65 | 10.8 | Y40 | 7KW inverter motor |
9 | W019B | 112 | 100 | 28.5 | 60 | 11.90 | Y40 | 9KW inverter motor |
Introduction Of refrigeration Motor:
The refrigeration system of the refrigerator usually includes compressor, condenser, evaporator and other components. In these systems, permanent magnet ferrites can be used to make efficient motors and pumps, improving overall energy efficiency. For example, the permanent magnet synchronous motor has high efficiency and fast start when regulating the compressor, which can effectively reduce the consumption of electric energy.
The door seal of the refrigerator is an important part of keeping the internal temperature stable. The magnetic seal made of permanent magnet ferrite material has good magnetic force, which can ensure the closure of the door and reduce the loss of cold air. In addition, this seal has the characteristics of wear resistance, which can extend the service life and reduce the frequency of replacement.
Modern refrigerators are increasingly using intelligent control systems, and permanent magnet ferrite also plays an important role in the sensors and actuators of refrigerators. Using the characteristics of permanent magnet materials, the sensitivity and feedback speed of the sensor can be improved to ensure that the working state of the refrigerator is in the best state.
To know more about Xinheng Magnets