ASME SB163 UNS N04400 Monel 400 G Type Finned Tube For Heat Exchanger Application
G-type finned tubes are a type of heat exchanger component commonly used in industries where heat transfer is crucial. These tubes have a specific fin design that enhances their efficiency in transferring heat between two mediums. The fins improve the surface area of the tubes, thus increasing the heat transfer rate. Finned tubes, including G-type fins, are often used in boilers, air conditioning systems, heat exchangers, and other industrial applications where efficient heat transfer is required. The G-type fin design typically features a wavy shape, which helps in increasing the surface area for improved heat transfer efficiency.
About Monel 400 Tube
Monel belongs to a group of nickel alloys. It is produced with high concentrations of copper and chromium in their chemical composition. These tubes are designed to suffice in corrosion stress-induced environments. They don’t easily dissociate or deform under any temperatures. The SB 163 N04400 grade is designed with superior strength and excellent mechanical properties. They possess a minimum tensile strength of 550Mpa and a minimum yield strength of 240Mpa. The products from this grade can be easily elongated by 40%.
Monel 400 is a nickel-copper alloy (about 67% Ni – 23% Cu) that is resistant to sea water and steam at high temperatures as well as to salt and caustic solutions. Alloy 400 is a solid solution alloy that can only be hardened by cold working. This nickel alloy exhibits characteristics like good corrosion resistance, good weldability and high strength. A low corrosion rate in rapidly flowing brackish or seawater combined with excellent resistance to stress-corrosion cracking in most freshwaters, and its resistance to a variety of corrosive conditions led to its wide use in marine applications and other non-oxidizing chloride solutions.
Tube Chemical Composition
Grade | C | Mn | Si | S | Cu | Fe | Ni | Cr |
Monel 400 | 0.30 max | 2.00 max | 0.50 max | 0.24max | 28.0-34.0 | 2.50 max | 63.00 min | – |
Tube Mechanical Properties
Element | Density | Melting Point | Tensile Strength | Yield Strength (0.2%Offset) | Elongation |
Monel 400 | 8.8 g/cm3 | 1350 °C (2460 °F) | Psi – 80,000 , MPa – 550 | Psi – 35,000 , MPa – 240 | 40 % |
Tube Physical Properties
Properties | Metric | Imperial |
---|---|---|
Density | 8.8 gm/cm3 | 0.318 lb/in3 |
G-Type Finned Tube Features
1. Compact design
2. High-performance
3. Easy installation
4. Less space required
5. Less cabling
6. Optimized surface
7. Finest technology used
8. Average corrosion protection
9. Less energy consumption
10. Increased reliability
11. Low maintenance
12. High mechanical resistance
Processes of G-type Finned Tube
In G-type finned tubes, the fins are prepared by embedding the metal strip into a groove. The latter is formed on a base tube. Placing the fin on it, back-filling is done – resulting in strong attachment of the fins to the base tubes. Hence, the name G-Fin Tubes has come up. The three processes mentioned above are carried out simultaneously. Maximum heat transfer is expected out of the g-fin tubes as the fins are strongly attached to the base tube.
The G-type finned tubes usually work at high temperature (with around 400 degree Celsius) applications. Made of copper, carbon, or aluminium, these fins have comparatively less resistance towards atmospheric corrosion. On the other hand, mechanical resistance is acceptable. Stainless steel and carbon steel fin materials are also used, but particular processing and tooling of the steel fin strips are necessary. Air coolers, radiators, etc use the g-fin tubes.
Technical Details/Base Tube Details
Tube Diameter : 20 mm OD Min to 219 mm OD Max.
Tube Thickness : Minimum 2 mm up to 16mm
Tube Material : Carbon Steel, Stainless Steel, Alloy Steel, Corten steel, duplex Steel, Super Duplex Steel, Inconel, High Chrome High Nickle & Incolloy, CK 20 material and some other material.
For a rapid quotation, plz send with following requirement:
Number of pieces
base tube: Diameter, thickness, length and material specification.
Fins: material specification, type (solid or serrated), height, thickness, spacing, finned length and unfinned sections. Weld prep details if required.
Delivery period required.
Advantage of Fin Tube
By not using a finned tube the outside surface area is not significantly greater than the inside surface area. Because of that, the fluid with the lowest heat transfer coefficient will dictate the overall heat transfer rate. When the heat transfer coefficient of the fluid inside the tube is several times larger than that of the fluid outside the tube the overall heat transfer rate can be greatly improved by increasing the outside surface area of the tube.
For applications that involve the transfer of heat from a hot fluid to a colder fluid through a tube wall, fin tubes are used. Usually, for an air heat exchanger, where one of the fluids is air or some other gas, the air side heat transfer coefficient will be much lower, so additional heat transfer surface area or a fin tube exchanger is very useful. The overall pattern flow of a finned tube exchanger is often crossflow, however, it can also be parallel flow or counterflow.
Fins are used to increase the effective surface area of heat exchanger tubing. Furthermore, finned tubes are used when the heat transfer coefficient on the outside of the tubes is appreciably lower than that on the inside. In other words, heat transferred from liquid to gas, vapor to gas, such as steam to air heat exchanger, and thermic fluid to air heat exchanger.
Industries where G-Type Finned Tubes are used
1. Rubber plants
2. Power plants
3. Petroleum industries
4. Chemical industries
Other Applications
1. Marine engineering.
2. Chemical and hydrocarbon processing equipment.
3. Gasoline and freshwater tanks.
4. Crude petroleum stills.
5. De-aerating heaters.
6. Boiler feed water heaters and other heat exchangers.
7. Valves, pumps, shafts, fittings, and fasteners.
8. Industrial heat exchangers.
9. Chlorinated solvents.
10. Crude oil distillation towers.