Zr Alloy Pipe is solid solutions of zirconium or other metals, a common subgroup having the trade mark Zircaloy. Zirconium has very low absorption cross-section of thermal neutrons, high hardness, ductility and corrosion resistance. One of the main uses of zirconium alloys is in nuclear technology, as cladding of fuel rods in nuclear reactors, especially water reactors. A typical composition of nuclear-grade zirconium alloys is more than 95 weight percent zirconium and less than 2% of tin, niobium, iron, chromium, nickel and other metals, which are added to improve mechanical properties and corrosion resistance.
CHEMICAL COMPOSITIONS (NOMINAL)
Type | Zr+Hf | Hf | Fe+Cr | H | N | C | O | Nb |
---|---|---|---|---|---|---|---|---|
Zr702 | >99.2 | <4.5 | <0.2 | <0.005 | <0.025 | <0.05 | <0.16 | / |
Zr705 | 95.5 | <4.5 | <0.2 | <0.005 | <0.025 | <0.05 | <0.18 | 2.0-3.0 |
Density: 6.51g/cc
Melting Point: 1852°C
Thermal Conductivity: 22W/(m °C)
Elastic bend modulus: 99.3GPa
Thermal Expansions: 5.4x10 /°C
PARAMETERS (STANDARD)
Executive standard: ASME SB-658 / ASTM B658-07
Zr alloy pipe outer diameter 6.0-114mm
Zr alloy pipe wall thickness 0.3-8.0 mm
Zr alloy pipe length ≤ 18000mm
APPLICATIONS
Zirconium alloys are corrosion resistant and biocompatible, and therefore can be used for body implants. In one particular application, a Zr-2.5Nb alloy is formed into a knee or hip implant and then oxidized to produce a hard ceramic surface for use in bearing against a polyethylene component. This oxidized zirconium alloy material provides the beneficial surface properties of a ceramic (reduced friction and increased abrasion resistance), while retaining the beneficial bulk properties of the underlying metal (manufacturability, fracture toughness, and ductility), providing a good solution for these medical implant applications.